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1. INTRODUCTION

Absorbances measured using line-of-sight techniques inherently report spectral attenuation integrated
along the entire beam path (Limbaugh 1985). At a given frequency, line-of-sight absorbance through a
low-pressure combusting system may have contributions from gases at several different densities and
temperatures corresponding to the light beam passing through different regions in the low-pressure
containment chamber. The degree to which the line-of-sight path is nonhomogeneous is determined by
diffusion and flow dynamics within the flame and low-pressure containment chamber. Usually, the region
of interest is the flame region where the density of some combustion gases may be less than in cooler

portions of the line-of-sight path. This situation is illustrated in Figure 1.

Low pressure containment chamber

Low pressure burner

Line-of-sight path

- ———D

LiF window

Shroud gas region |

Flame region

Figure 1. The line-of-sight path through the low-pressure containment chamber as viewed from above

the apparatus. Gas densities and temperatures may differ greatly in going from the exhaust gas
region into the shroud gas region into the flame region.




Several methods have been developed to minimize contributions to measured absorbance arising from
specieé outside the region of interest of the line of sight. These range from instrumental techniques such
as "onion peeling" (Dasch 1992) and tomographic analysis (Cormack 1963), to restricting observation to
species or states of species that minimize potential errors or may only exist in the line-of-sight region of
interest (Dayton et al. 1993). A common method of measuring temperature using absorbance spectra
employs tunable diode laser (TDL)-based, two-line thermometry (Hanson and Falcone 1978; Schoenung
and Hanson 1981). In this method, temperature is calculated by fitting the integrated absorbance of two
close-lying rovibrational transitions originating from different vibrational states to a Boltzmann

distribution.

To minimize errors in temperature measured by two-line thermometry, it is important to minimize the
degree of flamespreading, and hence the amount of absorbing gas, beyond the bumer surface diameter.
This has been shown (Jeffries et al. 1992) to be most easily accomplished by keeping total pressure within
the flame chamber above 30 torr. Unfortunately, raising the total pressure causes flame regions to become
more compact, limiting spatial resolution. Spectral lines selected for the analysis should have the largest
separation of initial energy states possible to maximize temperature sensitivity (Ouyang and Varghese
1990). It is also necessary to maximize the ground state energy of the most intense transition so as to

minimize the effect of "cold gas" absorbance.
2. BACKGROUND

In our experiments, we have measured temperatures and species concentration profiles in a 20-torr
premixed CH,/O, flame as a function of height above the surface of a flat flame bumer. Species
concentrations are measured using line-of-sight TDL infrared absorption spectroscopy. Temperatures are
measured using TDL-based, two-line thermometry and a fine-wire Pt/Pt-10%Rh thermocouple.
Temperature is measured using two complementary methods because of limitations associated with each
technique. For thermocouple measurements, the main limitation is that the thermocouple wire must enter
the flame, and this perturbation may cause the measured temperature to be in error. For two-line
thermometry, the main limitation is that the technique is a line-of-sight measurement in which absorbance
is integrated along the entire light path. Additionally, for compact flame zones, the probe laser beam

diameter may be large enough to sample regions of high temperature variance.




As an example of the discrepancy that may exist between results obtained by these complementary
metho&s, Figure 2 shows flame temperatures as a function of height above the bumer surface for a 20-torr
premixed CH,/O, flame measured by two-line thermometry and by a thermocouple. The thermocouple
temperatures have been corrected for radiative emission (Sausa et al. 1990). Figure 2 indicates that the
temperature as a function of height above the burner surface in a 20-torr premixed CH,/O, flame rises
faster when measured using two-line thermometry than when measured using a thermocouple. Conversely,
the overall temperature of the same flame is found to be at a higher temperature and the peak temperature
at a distance further from the burner surface when measured by a thermocouple than when measured using
two-line thermometry. This report addresses the latter discrepancy by using tomographic analysis to
provide a correction to line-of-sight spectra for this combusting system.
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Figure 2. Temperatures measured using two-line thermometry and a Pt/Pt-10%Rh thermocouple show
different temperature vs. height above bumer surface contours. Thermocouple temperatures
have been corrected for emissivity.




3. EXPERIMENTAL

3.1 Apparatus. The experimental apparatus has been extensively described in a previous publication
(McNesby and Fifer 1992). Briefly, the apparatus consists of a low-pressure flat flame bumner (McKenna
Industries, Inc.) mounted on translational stages inside an evacuable chamber. The evacuable chamber
is equipped with LiF windows (apertured to 800 pm diameter) to allow passage of infrared laser radiation.
Since the infrared laser beam remains fixed in position, different parts of the flame are examined by

moving the burner within the chamber relative to the laser beam path.

Laser radiation is provided by a helium-cooled TDL (Laser Photonics, Analytics Division) and
detected using liquid-nitrogen-cooled HgCdTe infrared detectors. Laser output is collimated, mode and
coarse frequency selected, and chopped prior to entering the low-pressure chamber. Lock-in detection at
the chopping frequency effectively discriminates against emission from the flame. Entrance and exit
apertures mounted on the evacuable bumer chamber restrict the maximum beam diameter through the
flame to 800 ym. For concentration and two-line thermometry measurements, the laser was scanned over
two pairs of CO transitions (Todd et al. 1976) (P18 v=1-2 at 2042.9972 cm™}; P12 v=2—3 at
2042.8085 cm™! and P13 v=2-3 at 2038.6249 cm™!; P19 v=1—2 at 2038.5822 cm™1). These line pairs
were selected because they required the smallest scanning range within the specified output of our laser
system (~2030-2060 cm™Y), because absorption from a vibrationally excited state is minimized in room
temperature CO, and because these lines conformed to previously published criteria for two-line
thermometry experiments (Ouyang and Varghese 1990). Linearity of the laser frequency versus tuning
current was checked using a confocal‘ etalon and also by visual examination of room température CO
absorption profiles. It was found that for the small tuning range of these experiments (~0.2 cm™) no
correction was necessary to account for nonlinearity of laser frequency with tuning current. All flames
studied were stoichiometric CH, (0.95 liters/min)/O, (1.9 liters/min) flames surrounded by an Ar
(3 liters/min) shroud. Total pressure within the burner chamber was maintained at 20 torr.

Thermocouple temperature profiles were measured using 100-pm Pt/Pt-10%Rh thermocouples coated
with a refractory mixture of yttrium oxide and beryllium oxide (Kent 1970). The refractory coating is
necessary primarily to promote radiative cooling of the interior of the thermocouple wire and also to
inhibit any catalytic reactions that may occur at the platinum surface. Temperatures were measured with

the thermocouple junction at the center of the flame. The thermocouple was withdrawn from the flame




region when line-of-sight spectra were measured. Measured thermocouple temperatures were corrected

for radiative heat losses (Sausa et al. 1990).

3.2 Data Analysis. It was assumed that all flames investigated possessed axial symmetry. Scans at
equal distance from either side of the flame center showed the flame to be axisymmetric to within the
accuracy of the experiment. The data collection scheme was as follows. Starting at a fixed height above
the bumer surface, a transmission spectrum was measured. The horizontal motion stage was then
translated 2 mm, and another scan measured. This process was repeated until 20 parallel transmission
spectra had been recorded. The TDL probe beam diameter was 800 pm. The initial scan was through
the center of the flame, with each successive scan closer to the perimeter of the flame. Since the bumer
radius is 30 mm, this data collection scheme provides five scans outside a cylinder defined by the burner
circumference. This is necessary to examine contributions to line-of-sight absorbance by CO in regions

of the flame that have spread radially beyond the bumer surface diameter.

The tomographic analysis of the line-of-sight spectra employed a 3-point Abel inversion that has
recently appeared in the literature and is available in spreadsheet form (Dasch 1992), although several
other methods were also tried and gave similar results (Deutsch and Beniaminy 1983). Absorbance data
were used in all inversion routines. For an axisymmetric flame, it is assumed that at any height above
the bumer surface, temperatures and species concentrations have only radial dependence. Any species or

temperature gradients may then be mapped as a series of concentric circles centered about the burner axis.

Tomographic analysis as employed here uses a series of parallel line-of-sight absorbance spectra at
a given height in the flame to obtain the radial dependence of species concentration and temperature at
that height. The line-of-sight absorbance at a given frequency for a single absorbing species through an
optically thin, axisymmetric medium may be given by (Cormack 1982):

1
2] f(r)rdr

B0 = M

where g (x) is the line-of-sight absorbance through the medium at lateral position x, and f(r) is the product
of the absorption coefficient and the partial pressure at radial position r within the axisymmetric medium.
. If more than one species absorbs at this frequency, then f(r) would be a sum of absorption coefficients
times partial pressures. The previous equation may be solved for f(r) using the Abel transformation:




1
__ 1 (x)dx

T

where g’ (x) denotes the derivative with respect to x of the function g(x). Spatial resolution of f(r) is

determined by the diameter of the infrared laser beam (800 pm). This method of analysis is shown
schematically in Figure 3. Problems and limitations of analyzing line-of-sight data using Abel inversion

techniques have been discussed previously in the literature (Best et al. 1991).

Figure 3.

— -1
X
(lateral coordinate)

/’\ Line-of-sight path
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\ (line-of-sight absorbance)

(radial coordinate)

\\ .
cross section of flame

Moving the line-of-sight path to different values of the lateral coordinate, x, allows different

line-of-sight absorbances, g(x) to be measured (see text).

The error in the tomographic analysis employed here was estimated by generating synthetic line-of-

sight data for a "perfect” flat flame (which would have a uniform radial CO distribution across the burner

face and no CO beyond the bumer face radius) and then using the 3-point Abel inversion to retrieve the

parameters used to originally generate the synthetic data. Tomographic analysis of these synthetic data

sets showed a small systematic error for values of localized absorbance at the edge of the flame, near the

region of the largest change in localized CO absorbance with radial position. The nature of the error was




to overestimate the species distribution at the flame edge by approximately 5%. However, the Abel
inversion technique did not report localized absorbance outside of the synthetic flame region. Also, the
effect of absorption of light by CO outside of the optically accessible 40-mm radius was found to have
a significant effect on reported localized absorbance within the optically accessible area. Since the
absorbance from the hot band transitions used here was vanishingly small outside of the optically
accessible region, we do not believe this to be an important source of error. A discussion of errors in
tomographic reconstruction is beyond the scope of this report and has been discussed elsewhere for the
case of one-dimensional systems (Best et al. 1991). We do believe that it is necessary to examine the

effect of the inversion technique on synthetic data that approximates each system to be examined.

For the data analysis employed here, raw transmittance spectra for each scan were rationed to an
artificial baseline constructed from nonabsorbing portions of each spectrum. A new baseline was
constructed for each individual scan. This procedure was necessary because of the continual drift of the
TDL output with time. Normally, compensation for this drift is accomplished by sampling a portion of
the laser output with a pellicle beamsplitter and simultaneously collecting a background scan. However,
for our apertured line of sight, it was found that the slight beam walk (caused by the grating used to
coarse select the laser frequency) across the low-pressure chamber entrance aperture during laser frequency

scanning made obtaining a simultaneous output matched background spectrum difficult.

The transmittance spectrum obtained using the synthetic baseline was then converted to absorbance,
and each spectral feature fit to a Voigt line shape (which just happens to describe the data well) to obtain
an integrable function. Since we are assuming variance of CO temperature and density along the line of
sight, no inferences in this are drawn from the values of the Voigt fit parameters. An alternative method
was to collect a background spectrum with the flame off at the end of a set of parallel scans. When using
this method, it was necessary to employ a baseline correction following conversion to absorbance prior
to fitting a Voigt function to the data. Both methods of obtaining absorbance spectra gave similar results.
The fitted spectrum was then integrated and the results used as input to the Abel inversion routine. Again,
it should be emphasized that for the tomographic analysis, the Voigt function was used only to obtain an
integrable function that described the data. An additional reason for using the Voigt function to
approximate the observed data is that a fit of both peaks in the measured spectrum results in deconvolution

of the line shapes, minimizing integration errors caused by line overlap.




For the two-line thermometry experiments where uniform conditions along the line of sight were
impﬁciﬂy assumed (the "corrected" line-of-sight measurements), CO temperature and concentration were
varied in an expression for the Voigt line shape until a best fit to the observed data for the two lines
observed in the spectrum was obtained. The areas underneath the individual peaks of the fitted spectrum
were used for the final temperature calculation. In this way, both rovibrational and translational
manifestations of the temperature were used in the determination (Varghese 1980). Typically, 2,048 data
points were collected over a scan range of 0.1 cm™! for an effective resolution (Rayleigh criterion) of
approximately 0.0005 em™). At 2,000 K, the line width (Guelachvili et al. 1992) (FWHM) for CO
rovibrational transitions originating from an excited vibrational state is approximately 0.05 em L,

4. RESULTS AND DISCUSSIONS

Figure 4 shows an absorbance spectrum of CO through the center of a 20-torr CH,/O, flame. The
line of sight is 5.2 mm above the burner surface using an 800-ym-diameter infrared laser beam. Figure 5
shows the line-of-sight integrated absorbance for CO P19 v=1-2 (the large peak in Figure 4) in the
20-torr CH,/O, flame as a function of the radial distance from the bumer center to the line of sight.
Spectra were measured at a constant height of 5.2 mm above the bumer surface. This figure is a graphical
representation of the data input into the Abel inversion routine. Since the edge of the burner surface lies
at -30 and +30 mm, CO absorbance outside of this region is assumed to be from gas outside of the
cylinder defined by the bumer circumference. From Figure 5, it is clear that there is significant line-of-
sight absorbance for the CO (P19 v=1-2) transition from hot CO gas outside of the region defined by

the burner circumference.

Figure 6 shows the results of tomographic analysis of line-of-sight absorbance spectra through a
20-torr CH,/O, flame, with the line of sight contained within a plane 800 pm thick and 4.19 mm above
the bumer surface. The tomographic analysis indicates that the distribution of population in the first and
second excited vibrational states (assuming rotational equilibrium) within the line-of-sight plane is not
uniform. From reconstructions using synthetic line-of-sight data, we estimate the uncertainty in the
localized CO distribution to be less than 5%. The increase in localized CO density at the edges of the
flame was observed for all heights studied.

The ratio of localized integrated absorbance of P13 (v=2—3) to P19 (v=1-2) is also shown in
Figure 6. This ratio is nonlinearly proportional to the rovibrational flame temperature at this position in
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Figure 4. CO hot band absorbance in a 20-torr stoichiometric methane/oxygen flame.
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thick and 4.19 mm above the burner surface for a 20-torr stoichiometric methane/oxygen flame.

Note that a constant temperature is seen across the burner face even though the populations of
P19 (v=1-2) and P13 (v=2—3) are not constant. Data have been reflected about the burner

axis.

the flame. It is observed that the temperature in the flame within the line-of-sight plane is fairly constant
even though the population of excited states varies with radial position. A conclusion from this figure is
that the assumption of uniform concentration or population distribution at a given height in the flame
based upon uniform temperature at that height is questionable. Although nonuniformity at a given height
across a "flat" flame has been observed previously (Jeffries et al. 1992) for species other than CO, to our
knowledge this is the first observation of this phenomenon using a line-of-sight technique. Calculations
are currently underway to determine if radial variations in temperatures or radial species are responsible

for the radial variation in CO excited state populations.

Finally, from Figure 6, it may be seen that population in the first excited vibrational state of CO
extends further outside the flame region than does population in the second excited vibrational state. The

10




fraction of the area under the curves for localized v=1-52 and v=2-—3 absorbance in Figure 6 that lies
w1thm the flame zone cylinder defined by the burner circumference is 0.88 (+0.01) and 0.92 (0.02),
respectively. Figure 7 shows the fraction of line-of-sight v=1—2 absorbance in a 20-torr CH,/O, flame
that lies within the cylinder defined by the bumer circumference as a function of height above the burner
surface and the best linear fit to the data. The best linear fit within the region defined by the bumer
diameter (60 mm) is given by

= -0.012 x +0.94 3

where y is the fraction of v=1—-2 absorbance within the flame region and x is the height in millimeters
above the bumner surface of the line of sight. The uncertainty in the slope in Equation 3 is +0.001.
Figure 8 shows the fraction of line-of-sight v=2—3 absorbance within the 20-torr premixed CH,/O, flame
as a function of height above the burner surface along with the best linear fit to the data. The analogous
equation to Equation 3 is

y = —0.0085 x +0.97. @
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Figure 7. The fraction of CO v=1—2 absorbance that lies within the flame region as a function of height
above the bumner surface for a 20-torr stoichiometric methane/oxygen flame.
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Figure 8. The fraction of CO v=2—3 absorbance that lies within the flame region as a function of height
above the bumer surface for a 20-torr stoichiometric methane/oxygen flame.

The uncertainty in the slope in Equation 4 is £0.0014. Again, it should be emphasized that this
correction applies only to the flame region defined by the bumer diameter (60 mm). For line-of-sight
spectra over the region studied here (0-10 mm above the bumer surface), Equations 3 and 4 indicate that
as distance from the burner surface increases, the amount of v=1—2 absorbance that lies outside the flame
increases at a faster rate than does the amount of v=2—3 absorbance that lies outside the flame. The
effect is that at any height above the bumer surface, the observed line-of-sight v=1—2 integrated
absorbance is in error to a greater degree than the observed line-of-sight v=2—3 integrated absorbance.
For each transition, an excess of integrated absorbance is always observed. Since the temperature is a
nonlinear function of the ratio of the integrated absorbance of the v=2-53 transition to the v=1-2
transition (Herzberg 1950), the observed temperature is always too low and the correction to the observed
temperature is not directly proportional to the height above the bumer surface. This effect has been
predicted (Ouyang and Varghese 1989) but has not been demonstrated previously by experiment.
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Figure 9 shows the temperature data presented in Figure 2 together with the line-of-sight temperature
data to which corrections according to Equations 3 and 4 have been applied. In general, the primary effect
of the line-of-sight correction is to shift the uncorrected temperature to a higher value. The secondary
effect of the correction (because of the differing values of the slopes in Equations 3 and 4) is to shift the
peak temperature further from the burner surface. Also, for the two-line thermometry experiments,
sensitivity decreases as the difference in initial energy states for the two transitions (E",-E";) approaches
kT. For the transitions used in these experiments, this situation exists near the peak measured temperature.
It is possible that better data would be obtained by repeating the experiments using transitions for which
initial states differ by more than one vibrational quantum number. Another possible reason for the
remaining discrepancy between corrected two-line thermometry measurements and thermocouple
measurements is that the linear fit to the data in Figures 7 and 8 is inappropriate and instead a nonlinear
fit to the data should be used. In this case, it would be necessary to do tomographic analysis of line-of-
sight spectra over a greater vertical range than has been done here. Still, the net result of the correction
is to bring the line-of-sight based temperature measurements into better agreement with thermocouple
measurements. Also, it has been suggested that since the final "bumed gas" temperatures are in good
agreement, it is possible that the discrepancy between thermocouple and optically measured temperatures
in the flame region are due to perturbations of the flame chemistry by the thermocouple. Our expeﬁenées
with thermocouple measurements indicate that this is probably not the case for the experiments reported
here. Finally, it is possible that horizontal movement of the burner within the low pressure chamber may
disturb the flow of gas outside of the burner region. We have assumed no appreciable effect of bumer

translation, but have not been able to verify this assumption.
5. CONCLUSION

Two main conclusions may be drawn from this work. First, it has been shown that when using line-
of-sight two-line thermometry to examine low-pressure flames, the observed temperature is always t0o low
and the correction that must be applied to the observed temperature is a nonlinear function of the height
above the burner surface. This is because there is a radial spread of the flame beyond the bumer radius,
imparting a 2-D structure to the flame. It has been shown that constant temperature across a flame at a
given height in the flame does not imply constant species concentration across the flame at that height.
Finally, for low-pressure work (<20-torr total pressure) where two-line thermometry is employed, it is
recommended that some type of tomographic analysis of line-of-sight data be performed to obtain a
functional relationship between absorbance outside of the flame region and height above the burner surface
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Figure 9. Uncorrected and corrected flame temperatures measured using line-of-sight two-line

thermometry and using thermocouples as a function of height above the bumer surface for a
20-torr stoichiometric methane/oxygen flame.

for the two transitions involved in the calculation. We believe that as multidimensional detector arrays
become more affordable, tomographic analysis will become an important tool for routine investigations
of combusting systems.
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